The new mutation theory of phenotypic evolution.
نویسنده
چکیده
Recent studies of developmental biology have shown that the genes controlling phenotypic characters expressed in the early stage of development are highly conserved and that recent evolutionary changes have occurred primarily in the characters expressed in later stages of development. Even the genes controlling the latter characters are generally conserved, but there is a large component of neutral or nearly neutral genetic variation within and between closely related species. Phenotypic evolution occurs primarily by mutation of genes that interact with one another in the developmental process. The enormous amount of phenotypic diversity among different phyla or classes of organisms is a product of accumulation of novel mutations and their conservation that have facilitated adaptation to different environments. Novel mutations may be incorporated into the genome by natural selection (elimination of preexisting genotypes) or by random processes such as genetic and genomic drift. However, once the mutations are incorporated into the genome, they may generate developmental constraints that will affect the future direction of phenotypic evolution. It appears that the driving force of phenotypic evolution is mutation, and natural selection is of secondary importance.
منابع مشابه
The role of environments with extreme ecological conditions in the reductive evolutionary development processes of animal
Different groups of animals show phenotypic characters, which have been resulted by the reductive phenomena. The examples are the absence of pigmentation; dwindle of eyes in some cave-living animals, and also the absence of scale in some fishes. These characters are often leaded to evolution of new species with special adaptation that is so called "Regressive evolution". The reductive phenomena...
متن کاملOptimum Pareto design of vehicle vibration model excited by non-stationary random road using multi-objective differential evolution algorithm with dynamically adaptable mutation factor
In this paper, a new version of multi-objective differential evolution with dynamically adaptable mutation factor is used for Pareto optimization of a 5-degree of freedom vehicle vibration model excited by non-stationary random road profile. In this way, non-dominated sorting algorithm and crowding distance criterion have been combined to differential evolution with fuzzified mutation in order ...
متن کاملDynamic Categorization of Semantics of Fashion Language: A Memetic Approach
Categories are not invariant. This paper attempts to explore the dynamic nature of semantic category, in particular, that of fashion language, based on the cognitive theory of Dawkins’ memetics, a new theory of cultural evolution. Semantic attributes of linguistic memes decrease or proliferate in replication and spreading, which involves a dynamic development of semantic category. More specific...
متن کاملبررسی تکوین نظریۀ ولایت عارفانه بر مبنای استحالۀ تمثیلی و چگونگی انتقالِ آن به عصر سهروردی
Many researchers have researched the source of Islamic Sufism from a certain intellectual disposition. The prevailing view of these research works, is based on arbolic thinking and having centralized roots. According to the theory of allegorical Metamorphosis, each of the topics discussed in Islamic Sufism, can have separate roots. The present paper aims to show that Iranian Culture is one...
متن کاملOptimum sliding mode controller design based on skyhook model for nonlinear vehicle vibration model
In this paper a new type of multi-objective differential evolution employing dynamically tunable mutation factor is used to optimally design non-linear vehicle model. In this way, non-dominated sorting algorithm with crowding distance criterion are combined to fuziified mutation differential evolution to construct multi-objective algorithm to solve the problem. In order to achieve fuzzified mut...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 104 30 شماره
صفحات -
تاریخ انتشار 2007